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Abstract

Kronecker-based approaches have been proposed for the
solution of structured GSPNs with extremely large state
spaces. Representing the transition rate matrix using Kro-
necker sums and products of smaller matrices virtually
eliminates its storage requirements, but introduces various
sources of overhead. We show how, by using a new data
structure which we callmatrix diagrams, we are able to
greatly reduce or eliminate many of these overheads, re-
sulting in a very efficient overall solution process.

1. Introduction

Generalized Stochastic Petri Nets (GSPNs) [1] and re-
lated models (e.g., stochastic reward nets [15], stochastic
activity networks [18]) are widely accepted as one of the
best high-level formalisms to define very large and complex
continuous-time Markov chains (CTMCs).

Their numerical solution, however, is limited by the
well-known state-space explosion problem: while the
GSPN modeling a (finite) system might be quite compact,
the underlying CTMC can easily have an enormous set of
states. Any algorithm for the “exact” solution of a GSPN
must then be able to cope with a very large reachability set,
or state space,S. This in turn affects the size of the infinites-
imal generatorQ, a square matrix of dimensionjSj (fortu-
nately very sparse), and of the vectors required by the itera-
tive numerical solution algorithms. We consider the station-
ary solution of ergodic models, hence, we need to store at
the very least one probability vector� of dimensionjSj, so-
lution of� �Q = 0; our work, however, applies just as well
to the study of absorbing CTMCs or the transient solution
of arbitrary CTMCs.�G. Ciardo’s work was supported in part by the National Aeronautics
and Space Administration under NASA Grant NAG-1-2168.yA.S. Miner’s work was supported by fellowships from the NASA
Graduate Student Researchers Program (Grant NGT-1-52195)and the Vir-
ginia Space Grant Consortium.

Even more so than the large computational requirements,
the storage ofS,Q, and� is then the main limitation to the
applicability of the numerical approach to practical models
of interest. Researchers have attacked this problem in vari-
ous ways. If we restrict our focus on “exact” numerical ap-
proaches (i.e., ignoring approximate methods such as trun-
cation and decomposition) for “general” models (i.e., with-
out assuming special properties in the model that would al-
low us to use ad-hoc solution algorithms), much recent work
is geared toward coping with the size of the data structures
used to storeS andQ.

For example, Sanders and his group have proposed to
store the matrixQ on secondary memory (a fast, large hard
disk) and retrieve it in “chunks” that are operated upon by
appropriate block-oriented numerical algorithms [10], orto
generate the entries ofQ “on-the-fly” from the high-level
model description, as needed [11]. Both approaches have
merit, but they also have limitations. The former approach
is still limited by the memory available on the hard disk
and it forces the use of a numerical algorithm that matches
the amount of block computation with the time to retrieve
a block from disk; if this delicate balance is perturbed, per-
formance suffers. The latter approach requires that the tran-
sition rate from statei to statej be efficiently computable
from the high-level model; this is often not the case when
the models have many immediate transitions that affect the
logical behavior but do not advance the modeled time.

A completely different approach based on the Kronecker
description of the matrixQ has been embraced instead by
several researchers, following the publication of Plateau’s
results on synchronized automata networks [17]. In partic-
ular, the approach has been adapted to queuing networks
(QNs), GSPNs, and related high-level models by Donatelli
[12] and Buchholz and Kemper [4, 6, 13]. Under the struc-
tural assumption that the model is composed ofK interact-
ing submodels, the matrixQ can be expressed as the sum of
a number of Kronecker products ofK small matrices. Then,
the memory requirements for the storage ofQ become neg-
ligible compared to that of the solution vector�. However,
the computational complexity of the approach can increase
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in practice by a factorK in the worst case [5]. Further-
more, especially in the initial proposals, this approach was
based on using the cross-productŜ of the state spaces of
the individual submodels instead of the state spaceS of the
overall model. WhenS is actually a strict subset of̂S , the
approach still works but memory and execution inefficien-
cies arise. In a badly chosen decomposition, the memory
wasted by allocating vectors of sizejŜj might more than
offset the savings obtained by not storingQ explicitly.

Another data structure requiring in principle much mem-
ory is the state spaceS. While S is not explicitly used
during a standard numerical solution, it is needed before
the solution itself, to generateQ, and after the solution,
to compute the output measures of interest.S can be vi-
sualized as a matrix with as many columns as the places
in the GSPN,jPj, and as many rows as there are reach-
able markings,jSj. The entries can then be booleans (if the
Petri net is safe) or integers, for the general GSPN models
we assume. To make things worse, in many GSPNs, most
places contain tokens, eliminating the possibility of a sim-
ple sparse storage approach. However, it is possible to use
much fewer thanjPj � jSj integers. In [8], we introduced
a multi-level technique that uses essentiallyjSj integers, an
amount of memory certainly no larger than that required for
the solution vector. In [14], we further improved on this
idea by combining the multilevel approach and its poten-
tial for various optimizations with binary decision diagrams
[2, 16]. The resulting symbolic generation technique, based
on multi-valued decision diagrams [19], can be used to gen-
erate transformation state spaces very efficiently in termsof
memory and time, indeed so efficiently that, for practical
GSPN models,S becomes a negligible factor in terms of
memory usage, just as the Kronecker matrices.

Further progress in this area can then come mostly from
two directions. The most important contribution would ob-
viously be to reduce the size of the remaining data struc-
tures,� and any other vector required by the numerical so-
lution, which are as of now the only real limitation from
a memory standpoint. Unfortunately, this appears to be a
very difficult problem, and it might not be at all solvable if
we restrict ourselves to exact solutions. If one accepts in-
stead to cope with these large vectors, it is possible to study
GSPNs with a few tens of millions of markings, using a
modern well-equipped workstation. The second direction
for research is then how to speed up the solution process by
reducing the overhead inherent in the use of the Kronecker
approach. This is the subject of our work.

We investigate the idea of using a new structure, some-
what analogous to the decision diagrams we use for the ex-
ploration of the state space [14]. However, instead ofS,
we use this structure to store the reachability graph and the
transition rate between markings, that is, the transition rate
matrixR (which equalsQ except for having zeros on its
diagonal). Since the new data structure essentially storesa
matrix, we name it “matrix diagram”. With it, we can storeS andR very efficiently. More importantly, this data struc-

ture speeds up the Kronecker solution, since it lends itself
perfectly well to the type and order of access to the entries
of R that are required by the numerical algorithms based
on a Kronecker representation. We stress that, with matrix
diagrams, there is no need to store the Kronecker matrices
separately: a single data structure encodes both the compo-
sition of each marking pair and the rate between them.

The results we report show a substantial improvement
over previously known methods, due both to the inherent
greater efficiency of the data structure we propose and to the
fact that more efficient methods requiring column access toR (e.g., Gauss-Seidel) can be employed without additional
overhead, instead of relying on slower methods that only
require row access toR (e.g., Power or Jacobi).

In Sect. 2, we briefly recall the approach based on Kro-
necker operators for the solution of GSPNs, and discuss its
potential pitfalls. In Sect. 3, we describe a new data struc-
ture and a set of manipulation routines that can substantially
increase the efficiency of a Kronecker implementation. Nu-
merical results for our proposed approach are reported in
Sect. 4. Finally, Sect. 5 concludes with a summary of our
contribution.

2. The Kronecker approach
In this section, we recall the basic Kronecker operators

and their use in the solution of GSPNs, with the help of a
running example. Then, we examine several problems that
negatively affect the solution complexity in a Kronecker-
based solution.

2.1. Definitions
We first recall the definition of the Kronecker productA = NKk=1Ak of K square matricesAk 2 IRnk�nk .

Throughout our presentation, we assume a fixedmixed-base
sequence(n1; : : : ; nK), which, as we will later see, corre-
sponds to the sizes of the “local state spaces” for the subnets
in our GSPNs. Given this base, we can then identify a se-
quence(l1; : : : ; lK) with its mixed-base value(� � � ((l1)n2 + l2)n3 � � �)nK + lK = KXk=1 lk KYm=k+1 nm!
and compute the Kronecker product asA(i1;:::;iK );(j1;:::;jK ) = A1i1;j1 �A2i2;j2 � � �AKiK ;jK :

The Kronecker sum
LKk=1Ak is defined in terms of

Kronecker products, asKMk=1Ak = KXk=1In1 
 � � � 
 Ink�1 
Ak 
 Ink+1 
 � � � 
 InK= KXk=1 IQk�1m=1 nm 
Ak 
 IQKm=k+1 nm ;
whereIx is the identity matrix of sizex� x.

We assume that the GSPN model under study is com-
posed ofK ergodic GSPNs having disjoint sets of places

2



www.manaraa.com

Pk, but not necessarily disjoint sets of transitionsT k. The
set of transitions of the overall model,T = [Kk=1T k, can be
partitioned into a setTS = ft : 9k; l; k 6= l; t 2 T k \ T lg
of synchronizing transitions, belonging to one or more sub-
models, andK setsT kL = T k n TS of transitions local to
each submodel. Synchronizing transitions are usually as-
sumed to be timed, and for simplicity we do so too, although
we have shown in [9] how to manage immediate synchro-
nizing transitions. In other words, any immediate transition
in the GSPN must be local, and we assume from now on
that it has been eliminated, so that all transitions are timed.

Since each submodel is ergodic, we can build the set
of (tangible) submarkings of thekth submodel in isola-
tion. If this set containsnk submarkings, we can defineŜk = f0; 1; : : : ; nk � 1g, and treat it as if it were a set of
reachable submarkings; that is, we identify the submarkings
with their indices. This is because the actual submarkings,
that is the number of tokens in the places ofPk, is not rel-
evant to our data structure, and can then be conceptually
stored (once) in a two-dimensional array of sizejPkj � nk,
sincenk is assumed to be small. To avoid confusion in the
remainder of the paper, we use the notation “[a1; : : : ; ax℄”
to indicate amarkingor a submarking, withai being the
number of tokens in placepi, while we use the notation
“(a1; : : : ; aK)” to indicate a globalstate, whereak is the
index of the submarking for thekth submodel.

We can define thepotential state spaceof the overall
model asŜ = Ŝ1�� � ��ŜK ; any tangible state(i1; : : : ; iK)
in the reachability setS belongs toŜ , but not all elements
of Ŝ are necessarily reachable.

The key idea in the Kronecker solution of such a GSPN
lies in expressing the transition rate matrixR 2 IRjSj�jSj
as the submatrix, corresponding to the reachable markings
only, of the matrixR̂ 2 IRjŜj�jŜj defined asR̂ =Pt2TS �NKk=1Wk(t) +LKk=1Rk (1)

whereWk(t) 2 IRnk�nk describes the effect of synchro-
nizing transitiont on thekth submodel, withWk(t) = I
for t 62 T k, andRk 2 IRnk�nk describes the effect of the
local transitionsT kL on thekth submodel itself.

It should be noted that the diagonal ofQ is guaranteed
to contain only nonzero elements, if the CTMC is ergodic.
Hence, in practical implementations of a standard numerical
solution whereQ is stored explicitly using sparse storage,
it is best to storeQ’s off-diagonal entries in the matrixR,
plus a full vectorh of the expected holding times, wherehi = �Q�1i;i , instead of storingQ as a single matrix. In
the Kronecker case, the diagonal ofQ can also be encoded
as a Kronecker expression, using a second set of local ma-
trices [20]. We follow [20] in the implementation of our
tool SMART [7], by storing the row sums of theWk andRk matrices and using them in a second Kronecker expres-
sion to compute the expected holding times. Alternatively,
SMART can storeh as a full vector, thereby increasing the
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Figure 1. Kanban Model

memory requirements (h occupies as much space as the sta-
tionary probability vector�) while reducing the computa-
tion times.

2.2. Running example

As a running example, we use the GSPN in Fig. 1, taken
from [9], modeling a kanban manufacturing system. The in-
put parameterN affects the size of the underlying CTMC.
When describing in detail the state space and transition rate
matrix underlying the GSPN, we use the valueN = 1; in
our experimental results of Sect. 4, we increaseN up to
seven. We partition the net into four subnets such that sub-
netk contains placesfpmk ; pba
kk ; pk; poutkg. This yields
two synchronizing transitions,tsyn
h1 23 and tsyn
h23 4,
while the others are local transitions.

The local state spaces (all possible submarkings) are:	k (pmk ; pba
kk ; pk; poutk) 	k (pmk ; pba
kk ; pk; poutk)
0 [0, 0, 1, 0] 1 [1, 0, 0, 0]
2 [0, 1, 0, 0] 3 [0, 0, 0, 1]

and Ŝ1 = Ŝ2 = Ŝ3 = Ŝ4 = f0; 1; 2; 3g. Then, for in-
stance, the global state(3; 0; 0; 2) corresponds to the mark-
ing with one token in placespout1 , p2, p3 andpba
k4 , and
zero tokens in the remaining places. From this state, we
can fire transitiontsyn
h1 23 to reach state(0; 1; 1; 2) or fire
transitiontba
k4 to reach state(3; 0; 0; 1).

The resulting Kronecker matrices for the kanban net are
shown in Fig. 2. We see that the transition rate from state(3; 0; 0; 2) to state(0; 1; 1; 2) is given by the only nonzero
term in row3 �43+0 �42+0 �41+2 �40 = 194 and column0 � 43 + 1 � 42 + 1 � 41 + 2 � 40 = 22 for the sum of the
Kronecker products in Eq. (1),W1(tsyn
h1 23)[3; 0℄ �W2(tsyn
h1 23)[0; 1℄�W3(tsyn
h1 23)[0; 1℄ �W4(tsyn
h1 23)[2; 2℄ = 0:4:
Similarly, the transition rate from state(3; 0; 0; 2) to state(3; 0; 0; 1) is given by the nonzero term in row194 and col-
umn3 � 43+0 � 42+0 � 41+1 � 40 = 193 for the Kronecker
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W1(tsyn
h1 23) = 24 0 0 0 00 0 0 00 0 0 00:4 0 0 0 35 W1(tsyn
h23 4) = I R1 = 24 0 1 0 00 0 0:36 0:840 0:3 0 00 0 0 0 35W2(tsyn
h1 23) = 24 0 1 0 00 0 0 00 0 0 00 0 0 0 35 W2(tsyn
h23 4) = 24 0 0 0 00 0 0 00 0 0 00:5 0 0 0 35 R2 = 24 0 0 0 00 0 0:42 0:980 0:3 0 00 0 0 0 35W3(tsyn
h1 23) = 24 0 1 0 00 0 0 00 0 0 00 0 0 0 35 W3(tsyn
h23 4) = 24 0 0 0 00 0 0 00 0 0 01 0 0 0 35 R3 = 24 0 0 0 00 0 0:39 0:910 0:3 0 00 0 0 0 35W4(tsyn
h1 23) = I W4(tsyn
h23 4) = 24 0 1 0 00 0 0 00 0 0 00 0 0 0 35 R4 = 24 0 0 0 00 0 0:33 0:770 0:3 0 00:9 0 0 0 35
Figure 2. Kronecker matrices

sum in Eq. (1),I[3; 3℄ � I[0; 0℄ � I[0; 0℄ �R4[2; 1℄ = 0:3:
These correspond to the rates for transitionstsyn
h1 23 andtba
k4, respectively.

2.3. Problems with the Kronecker approach
As shown in the previous section, the Kronecker ap-

proach allows us to represent the matrixR̂ very efficiently
in terms of memory. However, this compactness comes at a
price. In this section, we examine some of the inefficiencies
connected with the Kronecker approach. We have analyzed
these problems in depth in [5]; in the next section we show
how these can be alleviated or eliminated using our data
structures.
Potential vs. actual state space. As stated in the intro-
duction, initial approaches based on Kronecker operators
worked on the potential state spaceŜ = Ŝ1 � � � � ŜK . This
makes the storage of the overall state space unnecessary
(only the local state spaceŝSk must be stored), but it also
forces us to allocate solution vectors of sizejŜj instead ofjSj, resulting in a potentially fatal problem (̂S can be orders
of magnitude larger thanS).
Need to skip unreachable states.Using the potential in-
stead of the actual state space can also affect the efficiency
of the approach. In earlier implementations, the numerical
solution approach used the Power or Jacobi method, since
these can be implemented so that they access the matrixR̂ by rows. Since “we cannot reach an unreachable state
from a reachable state”, if the initial probability vector is
initialized with probability mass only on some reachable
states (e.g., the initial state with probability 1 and every
other state with probability 0) and the process is ergodic,
we are guaranteed that exactly and only the reachable states
will have nonzero entries in the solution vector. In the Ja-
cobi iterations, we can then avoid ever considering any en-
try in R̂ that is related to an unreachable state by skipping
over any row index whose corresponding entry in the cur-
rent iteration vector is zero. Alternatively, we either need

to keep track of the set of indices for which the iterate has
nonzero entries, or, equivalently, we can build the set of
reachable states before beginning the numerical computa-
tion, and retrieve their indices (their lexicographic position
in Ŝ) at each iteration of the numerical method. This latter
method is of course preferred when̂S is much larger thanS, since, in this case, the cost of testing for zero entries in
the iteration vector could dominate the computation.

Difficulties with access by columns. Since the Power
and Jacobi method have slow convergence, later approaches
have shown how to use faster methods such as Gauss-
Seidel. Unfortunately, these require sequential access to
each column ofR, and since “we may reach a reachable
state from an unreachable state”, these newer approaches
must prevent accessing such spurious entries. If the vec-
tors are of sizejŜj, the problem is automatically solved, in
a way, as long as the probability of any unreachable state
is initially set to zero. However, the complexity is now af-
fected by the number of spurious entries in the columns cor-
responding to reachable states.

Logarithmic overhead. Another way of dealing with the
problem of spurious entries, and at the same time solving
the even more important memory limitations inherent in us-
ing data structure of sizejŜj, is to use vectors of sizejSj
throughout. However, sincêR and notR is encoded by the
Kronecker expression in Eq. (1), we still need to map “po-
tential indices” (from0 to jŜj�1) to “actual indices” (from0 to jSj � 1). Every approach published so far [5, 13, 21]
maps these indices using a binary search of some type on
the data structure used to storeS, resulting in a logarithmic
overhead.

Interleaving reduces overhead, precludes column access.
The logarithmic overhead just mentioned isO(log jSj) us-
ing a straightforward implementation. At best, the loga-
rithmic overhead can be reduced toO(log jŜK j) by “in-
terleaving” the components of row and column indices in
the multiplication algorithms [5]. Also, each entry ofR
is conceptually obtained as a product ofK real numbers,
but many entries share (sub)products of2; 3; : : : ;K � 1
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Figure 3. State space data structure

of these numbers; an important advantage of interleaving
is that it amortizes the multiplications that must be per-
formed, by better exploiting these common subproducts.
However, the interleaving approach presented in [5] pre-
cludes access by columns, so we cannot use Gauss-Seidel
or any other algorithm with similar access requirements. As
pointed out in [5], this forces us to choose between a slower-
converging method with smaller per-iteration cost, and a
faster-converging method with higher per-iteration cost.

3. Our data structures
3.1. Decision diagrams to store the state space

The structure we use to represent the state space is essen-
tially a variant of a multi-valued decision diagram (MDD)
[19]. Our technique for generating and representing the
state space using decision diagrams (either binary or multi-
valued) is described in detail in [14], so we discuss it only
briefly here, for completeness.

State space generation with decision diagrams utilizes
two key ideas. The first is to represent a state space in
levels, or hierarchically, and was presented in [8]. A set
of K-element integer vectors (such asS) is represented by
storing a set of integers, where each integeri1 has associ-
ated with it a set of(K � 1)-element vectors of integers.
These(K � 1)-element vectors are combined withi1 to
formK-element vectors. The second key idea is to generate
the state spacesymbolically: each iteration can potentially
discover a large set of reachable states. As these iterations
only require manipulations of decision diagrams (instead of

manipulating individual states), symbolic generation using
decision diagrams is typically extremely efficient in terms
of both memory and CPU requirements.

Once the state space has been generated using decision
diagrams, it is transformed into a less dynamic structure
containing some additional information for computing state
indices. The final representation of the actual state space of
our running example is shown in Fig. 3. For example, fol-
lowing the downward pointer below submarking 3 at level
1, we obtain all the states of the form(3; �; �; �). If we
then follow the downward pointer below submarking 0 at
level 2, we obtain all the states of the form(3; 0; �; �). Re-
peating this process, we can determine that state(3; 0; 0; 2)
is reachable, while(3; 0; 2; 2) is not. Notice that many of
the downward pointers lead to the same structure, indicat-
ing equivalent sets. For instance, we can quickly see that for
any reachable state of the form(3; �; �; �), state(2; �; �; �)
is also reachable, and vice-versa.

An important property of our structure is that each level
maintains both full and sparse storage. TheFull pointers
allow us to determine if a given submarking is reachable in
one operation. For instance, following the downward point-
ers from submarking 3 at level 1 and then submarking 0 at
level 2, we can quickly tell that no reachable state of the
form (3; 0; 2; �) exists, since element 2 of theFull array is
empty. The rest of the structure uses sparse storage, which
not only saves memory, but also allows us to quickly iterate
over the reachable states, skipping the unreachable ones. If
we did not use arrayFull , a binary search could be used to
find a given submarking index at each level, but this would
add a logarithmic-time overhead [5].

Finally, the index of a state is determined using theo�set quantities. The offset specifies the number of accu-
mulated reachable states so far, not including the current
submarking. For instance, looking at the level 1 structure,
we see that there are 40 states of the form(0; �; �; �) and
120 states of the form(f0; 1; or 2g; �; �; �). Looking at the
level 2 structure, we see that there are 4 states of the form(3; 0; �; �) and 16 states of the form(3; f0 or 1g; �; �). Off-
sets are not explicitly stored at the last level: they can be
determined from theFull pointers. They are depicted in
Fig. 3 using dotted lines only for clarity. To determine the
index of a state, we follow the downward pointers and add
the offsets. So, for instance, the index of state(3; 0; 0; 2) is120+0+0+2. For the states reachable from(3; 0; 0; 2), we
discover that the index of state(0; 1; 1; 2) is0+4+0+2, and
the index of state(3; 0; 0; 1) is 120+0+0+1. Note that the
index of(0; 0; 0; 0) is 0 and the index of(3; 3; 3; 3) is 159.
Thus, the indexing mechanism maps the set of reachable
states onto the integersf0; : : : ; jSj� 1g. Also, note that the
indices count the states in lexicographical order:(0; 0; 0; 1)
has index 1,(0; 0; 0; 2) has index 2, and so on. Given any
reachable state(s1; : : : ; sK), we can easily determine the
“next” reachable state (meaning the reachable state with in-
dex one higher than the current reachable state). Using the
sparse structure of the decision diagram, we determine the
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next reachable substate at levelK. If there is none, we find
the next reachable substate at levelK � 1. If there are no
next reachable substates all the way back to level 1, then
the current state is the last reachable state. Otherwise, ifwe
stopped at levelk, we leaves1; : : : ; sk�1 unchanged, and
move tos0k, the next reachable substate aftersk for levelk.
Finally, we find the first reachable substates at levelsk + 1
throughK. This operation requires2K � 1 steps in the
worst case, and 1 step in the best (and most common) case.

Decision diagrams are extremely efficient both in terms
of memory and CPU: we can build and store enormous
reachability sets since the execution time and the memory
requirements are related to the size of the decision diagram,
not to the set encoded by it. In practical models solved nu-
merically, the memory for the decision diagram is essen-
tially negligible in comparison to the probability vector�.

3.2. Matrix diagrams for the transition rate matrix
We now introduce a new data structure for the storage

of real matrices. Since this structure is somewhat analo-
gous to decision diagrams, we call it amatrix diagram. A
matrix diagram imposes aK-level hierarchical structure on
each element of the matrix it represents. The element cor-
responding to row(r1; : : : ; rK) and column(
1; : : : ; 
K) is
computed as the product of element[r1; 
1℄ of a level 1 ma-
trix with element[r2; 
2℄ of a level 2 matrix, and so on. As-
sociated with each element (except for levelK) is a pointer
indicating which matrix must be used at the next level. For
instance, ifB[1; 2℄ = 1:5 andA[0; 0℄ = (2:0;B) then the
matrix represented byA has the value2:0 � 1:5 at row(0; 1)
and column(0; 2). A matrix diagram element is actually a
set; this allows for additions. Thus, ifC[1; 2℄ = 1:7 andA[1; 0℄ = f(2:0;B); (4:0;C)g, then the matrix represented
by A has the value2:0 � 1:5 + 4:0 � 1:7 at row (1; 1) and
column(0; 2). Only single-element sets are needed at levelK, since we can replace multiple elements with their sum
without changing the value of the matrix represented.

A matrix diagram representing the transition rate matrixR for our running example is shown in Fig. 4. Each element
is either the empty set (indicated by blank space) or, in our
case, a set of cardinality one (indicated by a box). Notice
that the level 3 matrices have different sizes. This is because
rows and columns corresponding to unreachable states have
been removed. To determine the transition rate from state(3; 0; 0; 2) to state(0; 1; 1; 2), we follow the appropriate
path and compute the product, in this case0:4 �1:0 �1:0 �1:0.
Similarly, the transition rate from state(3; 0; 0; 2) to state(3; 0; 0; 1) is 1:0 � 1:0 � 1:0 � 0:3. The numbers to the left
of the matrices are therow offsets. These are analogous to
the offsets used in decision diagrams: the index of a row
is computed by summing the row offsets. As with decision
diagram offsets, the row offsets do not need to be explicitly
stored at the last level.

Notice that this representation corresponds exactly to
the transition rate matrixR: we do not have extra rows
or columns. For instance, if we try to find the transition
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Figure 4. Matrix data structure

rate between unreachable states, such as from(3; 0; 1; 2) to(3; 0; 2; 2), we find that our level 3 matrix does not have a
row 1 or column 2. With the standard Kronecker approach,
instead, the transition rate is given by the nonzero term of
the Kronecker sum in Eq. (1)I[3; 3℄ � I[0; 0℄ �R3[1; 2℄ � I[2; 2℄ = 0:39
which corresponds to the rate for transitiontredo3. Matrix
diagrams are able to eliminate these rows and columns be-
cause, in this case, the level 3 matrices can depend upon
the rows and columns selected at levels 1 and 2. The Kro-
necker representation is unable to exploit dependencies of
this type (generalized Kronecker products allow entries to
depend on “global” indices, but this requires to store matrix
entries as functions not just real numbers, and their com-
putational complexity still suffers from the problem of un-
reachable states: evaluating a function only to find out that
it is zero has a cost).

3.3. Kronecker implementation

Building a matrix diagram representation of̂R using
Eq. (1) is straightforward. To construct a matrix diagram
for the Kronecker productA =NKk=1Ak we simply copy
each matrixAk as a levelk matrix diagram. Except at the
last level, each nonzero element ofAk is associated with a
downward pointer to the levelk + 1 matrix diagram repre-
senting matrixAk+1. The levelK matrix does not have any
downward pointers; it is merely a copy ofAK .

Addition of twoK-level matrix diagrams is done by tak-
ing the union of the elements of the level 1 matrices. The
result is a legal matrix diagram; however, in some cases,
we can reduce the size of the resulting set. For instance,
if two elements in a set have the same downward pointer,
they can be merged by replacing the rate with the sum of
the two rates. That is, if a set contains elements(r1;A) and
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GetColumnk(in: Mk; (
k; : : : ; 
K); out: 
olumn);[Mk: a level k matrix of the K-level matrix diagram;
k; : : : ; 
K : column indices to select at this level and below;
olumn: selected column stored as a sparse vector℄
1. if k = K then � The bottom level is trivial
2. 
olumn  Mk�;
k ;
3. else
4. 
olumn  0;
5. for each non-empty row rk in column 
k of Mk
6. for each element (value;Mdown) at Mkrk;
k
7. GetColumnk+1(Mdown; (
k+1; : : : ; 
K); 
o);
8. 
o  value � 
o;
9. shift indices of 
o by the offset of row rk;

10. 
olumn  
olumn+ 
o;

Figure 5. Obtaining a matrix diagram column(r2;A), we can replace those elements with(r1 + r2;A).
This is equivalent to the transformationr1 �A+ r2 �A) (r1 + r2) �A
Similarly, the transformationr �A+ r �B) r � (A+B)
can be performed by replacing elements(r;A) and(r;B)
with (r;A + B), whereA + B refers to the addition op-
erator for two(K � 1)-level matrix diagrams. While the
first transformation always reduces both CPU and memory
requirements, the second one decreases CPU requirements
but may actually use more memory: ifA andB are used
elsewhere, we effectively end up storingA,B, andA+B.

Once we have a matrix diagram representationR̂, we
can obtain one forR by removing the rows and columns
corresponding to unreachable states (the decision diagram
representation ofS is used to detect these states). For our
example, this transforms the4 � 4 matrices at level 3 into
the matrices of various sizes shown in Fig. 4.

As with decision diagrams, matrix diagrams must be
kept reducedto alleviate both memory and CPU require-
ments. A reduced matrix diagram contains no duplicate
matrices; instead, a single matrix is stored with multiple in-
coming pointers. The matrix diagram in Fig. 4 is reduced:
no two matrices have the same elements (two elements are
equal if their real values and downward pointers are equal).
Matrix diagrams are kept reduced during their updates us-
ing a uniqueness table. When a matrix is created or modi-
fied, the uniqueness table is searched for a duplicate. This
technique is analogous to the well-known approach used to
maintain reduced binary decision diagrams [3].

3.4. Access by columns

A critical requirement for a Gauss-Seidel numerical so-
lution is efficient access to a given column of the transition
rate matrix. A matrix diagram allows for efficient access
of a column if the matrices at each level of the matrix di-
agram have efficient access to the nonzero elements of a
given column. An algorithm for obtaining a specific column
of the matrix represented by a matrix diagram is depicted in
Fig. 5. If the specified matrix is at the bottom level of the

Level 1 GetColumn1(#1; (3; 0; 0; 1))
= GetColumn2(#3; (0; 0; 1))Ds
ale 0:84shift 40 E
+ GetColumn2(#2; (0; 0; 1))Ds
ale 1:0shift 120E =

valrow h0:84 0:3 0:541 122 156i
Level 2 GetColumn2(#2; (0; 0; 1))

= GetColumn3(#2; (0; 1))Ds
ale 1:0shift 0 E
+ GetColumn3(#3; (0; 1))Ds
ale 0:5shift 28 E =

valrow h0:3 0:52 36iGetColumn2(#3; (0; 0; 1))
= GetColumn3(#6; (0; 1))Ds
ale 1:0shift 0 E =

valrow h1:01 i
Level 3 GetColumn3(#2; (0; 1))

= GetColumn4(#2; (1))Ds
ale 1:0shift 0 E =
valrow h0:32 iGetColumn3(#3; (0; 1))

= GetColumn4(#1; (1))Ds
ale 1:0shift 8 E =
valrow h1:08 iGetColumn3(#6; (0; 1))

= GetColumn4(#3; (1))Ds
ale 1:0shift 0 E =
valrow h1:01 i

Level 4 GetColumn4(#1; (1)) = valrow h1:00 iGetColumn4(#2; (1)) = valrow h0:32 iGetColumn4(#3; (1)) = valrow h1:00 i
Figure 6. Computing a column of R

matrix diagram, we simply return the selected column (line
2). Otherwise, for each element of the levelk matrix, we
follow the downward pointer and recursively compute the
appropriate column of this levelk + 1 matrix (line 7). This
result is scaled by the value of the current element (line 8)
and shifted by the offset of the current row (line 9). Scaling
at each level performs the product, while the shifting deter-
mines the correct row index. Summing these shifted and
scaled results (line 10) gives the selected column.

Computation of a column ofR is shown for our running
example in Fig. 6. In the example, we use the matrix dia-
gram represented in Fig. 4 and the decision diagram repre-
sented in Fig. 3 as our data structures. A matrix is indicated
by its ordinal number; for instance,GetColumn3(#5; : : :)
refers to the fifth matrix (counting from the left) in level
3. In the example, we compute column(3; 0; 0; 1) of the
matrix diagram, which is column 121 ofR. This is done
by callingGetColumn1(#1; (3; 0; 0; 1); 
olumn). We see
that
olumn contains three entries: 0.84 at row 41, 0.3 at
row 122, and 0.5 at row 156. These correspond to incom-
ing arcs from states(1; 0; 0; 1); (3; 0; 0; 2) and (3; 3; 3; 0)
via transitionstok1, tba
k4 andtsyn
h23 4, respectively.

To multiply a row vector by a specific matrix column,
we can useGetColumn to obtain the column and then per-
form the inner product of the vector by the column. This is
preferred over modifyingGetColumn to perform the mul-
tiplication directly, as we will discuss in the next section.
In particular, one (forward) Gauss-Seidel iteration for the
computation of the stationary probability vector� is
for j = 0 to jSj � 1 do �j  hj �Pi:Ri;j>0 �i �Ri;j ;
where the nonzero entries in the columnj ofR are extracted
from the matrix diagram usingGetColumn .
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3.5. Using a cache to speed up access by columns
Continuing our running example, suppose after

accessing column(3; 0; 0; 1) of the matrix diagram
we wish to access column(2; 0; 0; 1). We find
that our call to GetColumn1(#1; (2; 0; 0; 1)) again
generates calls to GetColumn2(#2; (0; 0; 1)) andGetColumn2(#3; (0; 0; 1)). Since these calls are identical
to our previous column access, we can avoid duplicate
computation, provided we saved those results in a cache of
recent operations. Of course, we can also reuse them in the
event that duplicate calls toGetColumn occur in a single
column access; for instance,GetColumn1(#1; (1; 0; 0; 1))
generates two calls toGetColumn2(#3; (0; 0; 1)). Clearly,
this has enormous potential for reducing CPU requirements.

Our cache can be implemented by saving only the most
recently generated column for each matrix. Thus, for each
matrix in the matrix diagram, we require a single vector.
Fortunately, these vectors are extremely sparse in practice,
and we only need to store their nonzero elements. We can
compute the maximum column size (the maximum number
of nonzero elements in any column) for each matrix in a
bottom-up fashion. Then, we allocate a
olumn vector of
maximum column size for each matrix before starting the
numerical iterations, and use this vector whenever we callGetColumn for that matrix.

We mustclear the cache at levelk (set all the
olumn
vectors at levelk to a null value) whenever the specified col-
umn at levelk or any level belowk changes. For instance,
if our last column access was(3; 0; 0; 1), and now we are
accessing column(3; 2; 0; 1), we must clear the cache at
levels 1 and 2. Thus, to maximize our cache hits, after visit-
ing the reachable column for state(
1; : : : ; 
K), we should
visit next the reachable column for the state that follows(
1; : : : ; 
K) in lexicographic orderwhen the string is read
in reverse, i.e., whenK is the most significant (slowest
changing) index and1 is the least significant (fastest chang-
ing) index (this is not reverse lexicographic order!).

To implement this second “upside-down” order, we gen-
erate a second, upside-down, copy of the state space, and
store it in a decision diagramU . For any state(s1; : : : ; sK)
belonging toS, there exists a state(sK ; : : : ; s1) belong-
ing to U and vice-versa.U is used to determine the order
in which to access columns: if we just accessed column(
1; : : : ; 
K), we reverse the order to obtain(
K ; : : : ; 
1),
find the next reachable state(
0K ; : : : ; 
01) in U , reverse back
the order of its components to obtain(
01; : : : ; 
0K), find its
index inS, which is then next column to access.

These actions can be performed quite efficiently and,
thanks to the extreme compactness of decision diagrams,
storing the state space twice (i.e., asS andU) still requires
negligible memory. The computation of the index for the
next column requires to search twice for a state, once inU
(for a state “close” to the last one searched), and once inS
(for an arbitrary state). The second search is the most ex-
pensive, but it still requires onlyO(K) operations, and it
must be performed only once per column (i.e.,jSj times per
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Figure 7. GSPN for the Multiclass QN

iteration); this is much less expensive than the searches re-
quired by the algorithms discussed in [5],O(log jSj) or at
bestO(log jSK j), performed once per nonzero entry.

3.6. Benefits of our approach
In this section, we revisit the problems with the Kro-

necker approach (discussed in Sect. 2.3) and show how our
approach addresses these problems.
Actual state space.Like advanced Kronecker approaches,
our approach operates on solution vectors of sizejSj.
Skip unreachable states. We solve this by storing the
state spaceS, as do advanced Kronecker approaches. For
efficient storage ofS, we use decision diagrams, which can
also be used for Kronecker approaches. Decision diagrams
allow us to find the next reachable state quickly, inO(1)
operations at best (and on average), andO(K) at worst.
Efficient access by columns.Matrix diagrams allow us to
eliminate the rows and columns corresponding to unreach-
able states; this solves the problem of spurious entries.
No logarithmic overhead. Using the full pointers in
our decision diagrams, we can determine if a given state is
reachable inO(K) steps, and if a given substate is reachable
in O(1) steps. Thus, using “interleaving” Kronecker tech-
niques, the overhead for decision diagrams is onlyO(1).
Cache to avoid duplication of work. A significant source
of overhead in column access using the Kronecker approach
is performing the same floating point multiplications sev-
eral times. By using a cache, we can reduce this wasted
effort. With our approach, we visit the columns in an order
to maximize our potential cache hits. This allows us to reuse
floating point multiplication results as much as possible.

4. Experimental results
A prototype of our approach is implemented in the tool

SMART [7]. We test our approach on two models from
the literature. The first is our kanban system, our running
example. The second is a multiclass QN model from [5],

8
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its GSPN shown in Fig. 7 (white transitions are timed and
local, black transitions are immediate, and grey transitions
are timed and synchronizing; all rates are equal one and all
conflicts among immediate transitions are solved using a
uniform distribution).

Both models have as input parameters the initial number
of tokens in certain places (N for the kanban,N1 andN2
for the QN); these affect the size of the underlying CTMC.

The models were run on a 450Mhz Pentium-II worksta-
tion with 384Mb of main memory, under the Linux operat-
ing system. We compute the stationary probability vector
using iterative methods (i.e., Gauss Seidel or Jacobi), stop-
ping when the relative error between subsequent solution
vectors is less than10�5:maxi2S ������(old)i ��(new)i�(new)i ����� < 10�5:
We use a uniform probability for the initial solution vector.
All our timing results refer to runs that did not make use
of virtual memory. Data is missing from the table in cases
where the solution could not be run due to excessive mem-
ory requirements.

The tables compare our new approach, using decision di-
agrams and matrix diagrams, to the current state of the art
Kronecker approaches described in [5]. For comparison, we
also show the time requirements for explicit sparse matrix
storage, for those cases where the matrix can be stored in
memory. In all cases we use a full single-precision vector
for the probability vector (�). The Jacobi method requires
an additional accumulator, a full double-precision vector.
Holding times are computed as needed, except for the ex-
plicit storage case. In the Kronecker case, we use a Kro-
necker expression for the row sums. For the matrix diagram
approach, we use a second matrix diagram to represent the
row sums. Using a full vector to store holding times re-
duces the CPU time by 10% to 20%, at the cost of an extra
single-precision vector. For the Kronecker case, we use a
multilevel data structure forS as described in [5] and [8],
requiring about one byte per state. If we used decision dia-
grams in conjunction with the standard Kronecker approach
to eliminate the logarithmic overhead present in column ac-
cesses, performance would improve by a factor of 15% to
25%.

Results for the kanban model are shown in Table 1.
Looking at the state space sizes and the number of nonzero
entries inR, we see that matrixR is extremely sparse:
about 10 to 11 nonzeroes per column, on average. The
memory required for our matrix diagram structures (includ-
ing cache space) is about twice as much as for the Kro-
necker approach, but still an insignificant fraction of the
memory required for the probability vector. Looking at the
columns reporting the CPU time (in seconds per iteration),
we find that our matrix diagram approach requires about as
much time per iteration as for the Kronecker approach using
Jacobi and much less CPU time (about half) as for the Kro-
necker approach using Gauss-Seidel. As we expect, Gauss-
Seidel requires much fewer iterations than does Jacobi. We

see that matrix diagram Gauss-Seidel and Kronecker Gauss-
Seidel differ in the number of iterations required; this is be-
cause columns are visited in different orders. The fact that
in this particular case, matrix diagrams require fewer iter-
ations can only be attributed to good luck. The total CPU
time required is found by multiplying the number of iter-
ations by the CPU time per iteration. We see that, using
decision diagrams and matrix diagrams, we can solve ex-
tremely large systems in a reasonable amount of time: 40
million states in 3 days. For the caseN = 7, we require
0.22 seconds of CPU time for state space generation and
3,381 bytes for state space storage using decision diagrams.
This is clearly a small fraction of the time and memory re-
quired to compute�.

The results for the multiclass QN model are also shown
in Table 1. The state space size is determined by parametersN1 andN2, corresponding to the number of high and low
priority parts in the system, respectively (the rows are listed
according to state space sizes). In this case, matrix diagrams
require about three times as much memory as Kronecker,
and require about a third as much CPU time per iteration as
Kronecker for Gauss-Seidel. Again, matrix diagram Gauss-
Seidel requires roughly the same time per iteration as does
Kronecker Jacobi. In this case, Kronecker and matrix dia-
gram Gauss-Seidel require the same number of iterations.

5. Conclusion
We have introduced a new efficient data structure,matrix

diagrams, which can be used to store the very large tran-
sition rate matricesR that arise in the study of structured
GSPNs. For practical problems, the memory requirements
for the storage of the state spaceS and ofR are quite small,
usually negligible in comparison to the memory needed to
store the numerical solution, a vector of sizejSj.

Such enormous memory savings for the storage ofR
have already been demonstrated by the various Kronecker
implementations recently proposed. However, matrix di-
agrams also decrease the execution overhead inherent in
the Kronecker representation when accessing the entries ofR, while, at the same time, allowing efficient access “by-
column” to the entries ofR. Such a type of access is es-
sential when using faster-converging numerical algorithms
such as Gauss-Seidel.

Our results show a speedup factor of two or greater in the
solution times with respect to the fastest algorithms previ-
ously proposed. Since the difference is partially due to hav-
ing eliminated a logarithmic overhead factor, these differ-
ences are going to become even more relevant as improve-
ments in hardware allow us to tackle larger models.
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