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Abstract Even more so than the large computational requirements,
the storage of, Q, andr is then the main limitation to the
Kronecker-based approaches have been proposed for theapplicability of the numerical approach to practical madel
solution of structured GSPNs with extremely large state of interest. Researchers have attacked this problem in vari
spaces. Representing the transition rate matrix using Kro- ous ways. If we restrict our focus on “exact” numerical ap-
necker sums and products of smaller matrices virtually proaches (i.e., ignoring approximate methods such as trun-
eliminates its storage requirements, but introduces waio cation and decomposition) for “general” models (i.e., with
sources of overhead. We show how, by using a new datsput assuming special properties in the model that would al-
structure which we calmatrix diagramswe are able to  low us to use ad-hoc solution algorithms), much recent work
greatly reduce or eliminate many of these overheads, re-is geared toward coping with the size of the data structures
sulting in a very efficient overall solution process. used to stores andQ.
For example, Sanders and his group have proposed to
store the matriXQ on secondary memory (a fast, large hard
. disk) and retrieve it in “chunks” that are operated upon by
1. Introduction appropriate block-oriented numerical algorithms [10]t@r
Generalized Stochastic Petri Nets (GSPNs) [1] and re-generate the entries & “on-the-fly” from the high-level
lated models (e.g., stochastic reward nets [15], stoahasti model description, as needed [11]. Both approaches have
activity networks [18]) are widely accepted as one of the merit, but they also have limitations. The former approach
best high-level formalisms to define very large and complex is still limited by the memory available on the hard disk
continuous-time Markov chains (CTMCs). and it forces the use of a numerical algorithm that matches
Their numerical solution, however, is limited by the the amount of block computation with the time to retrieve
well-known state-space explosion problem: while the a block from disk; if this delicate balance is perturbed; per
GSPN modeling a (finite) system might be quite compact, formance suffers. The latter approach requires that tme tra
the underlying CTMC can easily have an enormous set of Sition rate from state to state;j be efficiently computable
states. Any algorithm for the “exact” solution of a GSPN from the high-level model; this is often not the case when
must then be able to cope with a very large reachability set, the models have many immediate transitions that affect the
or state spaces. This in turn affects the size of the infinites-  logical behavior but do not advance the modeled time.
imal generatoR, a square matrix of dimensig®| (fortu- A completely different approach based on the Kronecker
nately very sparse), and of the vectors required by the-itera description of the matrixQ has been embraced instead by
tive numerical solution algorithms. We consider the statio  several researchers, following the publication of Plateau
ary solution of ergodic models, hence, we need to store atresults on synchronized automata networks [17]. In partic-
the very least one probability vectarof dimensionS|, so- ular, the approach has been adapted to queuing networks
lution of - Q = 0; our work, however, applies just as well (QNs), GSPNs, and related high-level models by Donatelli
to the study of absorbing CTMCs or the transient solution [12] and Buchholz and Kemper [4, 6, 13]. Under the struc-
of arbitrary CTMCs. tural assumption that the model is composedoihteract-
ing submodels, the matri® can be expressed as the sum of
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in practice by a factor< in the worst case [5]. Further- ture speeds up the Kronecker solution, since it lends itself
more, especially in the initial proposals, this approack wa perfectly well to the type and order of access to the entries
based on using the cross-proddtof the state spaces of of R that are required by the numerical algorithms based
the individual submodels instead of the state spaoéthe on a Kronecker representation. We stress that, with matrix
overall model. Wher$ is actually a strict subset &, the diagrams, there is no need to store the Kronecker matrices
approach still works but memory and execution inefficien- Separately: a single data structure encodes both the compo-
cies arise. In a badly chosen decomposition, the memorysition of each marking pair and the rate between them.
wasted by allocating vectors of sizé\ might more than The re;ults we report show a substantial improvement
offset the savings obtained by not stori@gexplicitly. over previously known methods, due both to the inherent
Another data structure requiring in principle much mem- greater eff|C|ency_o_f the data structure we propose and to the
ory is the state spacs. While S is not explicitly used fact that more efficient methods requiring column access to
during a standard numerical solution, it is needed before R (€-9., Gauss-Seidel) can be employed without additional
the solution itself, to generat®, and after the solution, overhead, instead of relying on slower methods that only

to compute the output measures of intereStcan be vi-  '€quiré row access i (e.g., Power or Jacobi).
sualized as a matrix with as many columns as the places !N Sect. 2, we briefly recall the approach based on Kro-
in the GSPN,|P|, and as many rows as there are reach- necker operators for the solution of GSPNs, and discuss its

able markings|S|. The entries can then be booleans (if the Potential pitfalls. In Sect. 3, we describe a new data struc-
Petri net is safe) or integers, for the general GSPN modelsture and a set of manipulation routines that can substantial

we assume. To make things worse, in many GSPNs, mostncrease the efficiency of a Kronecker implementation. Nu_-

places contain tokens, eliminating the possibility of a-sim Merical results for our proposed approach are reported in

ple sparse storage approach. However, it is possible to use€Ct: 4 Finally, Sect. 5 concludes with a summary of our

much fewer tharP| - S| integers. In [8], we introduced ~ contribution.

a multi-level technique that uses essentigflyintegers, an

amount of memory certainly no larger than that required for 2. The Kronecker approach

the solution vector. In [14], we further improved on this

idea by combining the multilevel approach and its poten-

tial for various optimizations with binary decision diagra

[2, 16]. The resulting symbolic generation technique, dase

on multi-valued decision diagrams [19], can be used to gen-

erate transformation state spaces very efficiently in texfns

memory and time, indeed so efficiently that, for practical .

GSPN modelsS becomes a negligible factor in terms of 2-1. Definitions

memory usage, just as the Kronecker matrices. We first recall the definition of the Kronecker product
Further progress in this area can then come mostly from A — ®kK_1 AF of K square matriceA* € IRm*m,

two directions. The most important contribution would ob- Throughoat our presentation, we assume a fixeded-base

viously be to reduce the size of the remaining data struc- sequencén,, ..., nx ), which, as we will later see, corre-

tures, and any other vector required by the numerical so- sponds to the sizes of the “local state spaces” for the sabnet

|Uti0n, which are as of now the Only real limitation from in our GSPNs. Given this base, we can then |dent|fy a se-

In this section, we recall the basic Kronecker operators
and their use in the solution of GSPNs, with the help of a
running example. Then, we examine several problems that
negatively affect the solution complexity in a Kronecker-
based solution.

a memory standpoint. Unfortunately, this appears to be aquence(l,, . .., 1x) with its mixed-base value

very difficult problem, and it might not be at all solvable if K K

we restrict ourselves to exact solutions. If one accepts in- (... ((Iy)ny + Iy)ns - - )ng + g = Z (lk H nm>
stead to cope with these large vectors, it is possible toystud —1 meka1
GSPNs with a few tens of millions of markings, using a and compute the Kronecker product as

modern well-equipped workstation. The second direction Asir )i = AL AL G, AR

for research is then how to speed up the solution process by The Kronecker su

reducing the overhead inherent in the use of the Kroneckerk ronecker products, as

approach. This is the subject of our work.

We investigate the idea of using a new structure, some- X K

what analogous to the decision diagrams we use for the ex- @Ak = Zlm ® QL OA ®L,,, ® &Ly

ploration of the state space [14]. However, insteadSpf k=1 ket

we use this structure to store the reachability graph and the _ Z IH
k=1

v, AF is defined in terms of

k
k—1 QA" @Ik ,
nm Hm:k+1 T,

transition rate between markings, that is, the transitada r
matrix R (which equalsQ except for having zeros on its
diagonal). Since the new data structure essentially stores wherel, is the identity matrix of size: x .

matrix, we name it “matrix diagram”. With it, we can store We assume that the GSPN model under study is com-
S andR very efficiently. More importantly, this data struc- posed ofK ergodic GSPNs having disjoint sets of places

m=1
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P, but not necessarily disjoint sets of transitioh%. The

set of transitions of the overall modél,= UX_, 7%, can be
partitioned into a sefs = {t : Ik, I,k £1,t € T"NT"}

of synchronizing transitions, belonging to one or more sub-
models, andK setsTL’“ = T*\ Ts of transitions local to

each submodel. Synchronizing transitions are usually as-

sumed to be timed, and for simplicity we do so too, although
we have shown in [9] how to manage immediate synchro-
nizing transitions. In other words, any immediate traositi
in the GSPN must be local, and we assume from now on
that it has been eliminated, so that all transitions aredime

Since each submodel is ergodic, we can build the set
of (tangible) submarkings of thgt" submodel in isola-
tion. If this set containg; submarkings, we can define
Sk = {0,1,...,n, — 1}, and treat it as if it were a set of
reachable submarkings; that is, we identify the submasking
with theirindices This is because the actual submarkings,
that is the number of tokens in the placesRf, is not rel-
evant to our data structure, and can then be conceptuall
stored (once) in a two-dimensional array of siB& | x ny,
sincen;, is assumed to be small. To avoid confusion in the
remainder of the paper, we use the notatifm ;. . . , a,]”
to indicate amarkingor a submarking, withu; being the
number of tokens in placg;, while we use the notation
“(a1,...,ax)" to indicate a globaktate wherea,, is the
index of the submarking for the" submodel.

We can define th@otential state spacef the overall
modelasS = S! x- - - x SK; any tangible staté, .. . ,ix)
in the reachability se§ belongs taS, but not all elements
of S are necessarily reachable.

The key idea in the Kronecker solution of such a GSPN
lies in expressing the transition rate matBx e R/S/*I5|

as the submatrix, corresponding to the reachable markings

only, of the matrixR € RIS/*Sl defined as

R=Y,cr @ WO+ @R (D)
whereW*(t) € IR™*m describes the effect of synchro-
nizing transitiont on thek*™® submodel, withw*(¢) = T
fort ¢ 7%, andR¥F € IR"*"* describes the effect of the
local transitions7* on thek'™® submodel itself.

It should be noted that the diagonal @fis guaranteed
to contain only nonzero elements, if the CTMC is ergodic.
Hence, in practical implementations of a standard numierica
solution whereQ is stored explicitly using sparse storage,
it is best to stordQ’s off-diagonal entries in the matriR,,
plus a full vectorh of the expected holding times, where
h;, = —Q;/, instead of storing as a single matrix. In
the Kronecker case, the diagonal@fcan also be encoded
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Figure 1. Kanban Model

memory requirementd(occupies as much space as the sta-
tionary probability vectorr) while reducing the computa-

Yion times.

2.2. Running example

As a running example, we use the GSPN in Fig. 1, taken
from [9], modeling a kanban manufacturing system. The in-
put parameteV affects the size of the underlying CTMC.
When describing in detail the state space and transitien rat
matrix underlying the GSPN, we use the valie= 1; in
our experimental results of Sect. 4, we increaéaip to
seven. We patrtition the net into four subnets such that sub-
netk contains place$p,., , Poack, s Pks Pout, - THiS yields
two synchronizing transitionstsy,cni_23 and tsyncn23_a,
while the others are local transitions.

The local state spaces (all possible submarkings) are:

Wy, (pmkapbackkapkapoutk) | Wy, (pmkapbackkapkapoutk)
0 0,0, 1, 0] 1 [, 0,0, 0]
2 [0.1,0, 0] 3 [0.0,0, 1]

andS' = §? = 8% = §* = {0,1,2,3}. Then, forin-
stance, the global staf8, 0, 0, 2) corresponds to the mark-
ing with one token in places,.,, p2, ps andpp,ck,, and
zero tokens in the remaining places. From this state, we
can fire transitiort s, .1 _23 to reach stat€0, 1, 1, 2) or fire
transitiont,, .4 to reach staté3, 0,0, 1).

The resulting Kronecker matrices for the kanban net are
shown in Fig. 2. We see that the transition rate from state
(3,0,0,2) to state(0, 1, 1, 2) is given by the only nonzero
terminrow3-43 +0-42 +0-4! +2-4% = 194 and column
0-434+1-42+1-4' +2-4°% = 22 for the sum of the
Kronecker products in Eq. (1),

1 2
as a Kronecker expression, using a second set of local ma- W (Zsyncn1_23)[3, 0] - W= (Zsyneni _23)[0, 1]

trices [20]. We follow [20] in the implementation of our
tool SMART [7], by storing the row sums of tH&/* and

W3 (tsynchl_QS)[Oa 1] . W4 (tsynch1_23)[27 2] 0.4.

R* matrices and using them in a second Kronecker expres-Similarly, the transition rate from stat@, 0, 0, 2) to state

sion to compute the expected holding times. Alternatively,
SMART can storéh as a full vector, thereby increasing the

(3,0,0,1) is given by the nonzero term in ro¥94 and col-
umn3-43+0-42+0-4' +1-4°% = 193 for the Kronecker
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Figure 2. Kronecker matrices
sumin Eq. (1), to keep track of the set of indices for which the iterate has
A nonzero entries, or, equivalently, we can build the set of
I[3,3] - 1[0,0] - 1[0, 0] - R*[2,1] = 0.3. reachable states before beginning the numerical computa-
These correspond to the rates for transitiogs .1 _23 and ,t'onx and retngve thelr indices (thelr. lexicographic pmm
t res ivel ' in S) at each iteration of the numerical method. This latter
backd, rEeSpectively. - -
method is of course preferred whéhis much larger than
2.3. Problems with the Kronecker approach S, since, in this case, the cost of testing for zero entries in

the iteration vector could dominate the computation.

As shown in the previous section, the Kronecker ap- Difficulti ith b | si the P
proach allows us to represent the mafxvery efficiently iculties with access by columns. —since the Fower
and Jacobi method have slow convergence, later approaches

in terms of memory. However, this compactness comes atahave shown how to use faster methods such as Gauss
price. In this section, we examine some of the inefficiencies

connected with the Kronecker approach. We have analyzeose'del‘ Unfortunately, these require sequential access to

hese prolems i depth n 5 1 e et secton e snw 251 €0 of, 10 S1ce ey a0 8 reachabe
how these can be alleviated or eliminated using our data ' pp

structures. must prevent accessing such spurious entries. If the vec-

Potential vs. actual state space. As stated in the intro-  (OFS are of sizgS|, the problem is automatically solved, in
duction, initial approaches based on Kronecker operators® W& @s long as the probability of any unreachable state

worked on the potential state spase= S; x - - - Sk. This

is initially set to zero. However, the complexity is now af-
fected by the number of spurious entries in the columns cor-
makes the storage of the overall state space unnecessa
(only the local state spaceég must be stored), but it also

I?(/esponding to reachable states.
forces us to allocate solution vectors of sj& instead of ~ -Cgarithmic overhead. Another way of dealing with the
|S|, resulting in a potentially fatal problens(can be orders

problem of spurious entries, and at the same time solving
of magnitude larger thaff) the even more important memory limitations inherent in us-
Need to skip unreachable states.Using the potential in- ing data structure of siz5|, is to use vectors of sizgs|

stead of the actual state space can also affect the eﬁicienc{'m“ghom- However, sind& and notR is encoded by th“e
of the approach. In earlier implementations, the numerical Kronecker expression in Eq. (1), we still need to map “po-
solution approach used the Power or Jacobi method, sincdential indices” (from to |S| — 1) to “actual indices” (from
these can be implemented so that they access the matri® to |[S| — 1). Every approach published so far [5, 13, 21]
R by rows. Since “we cannot reach an unreachable stateMaps these indices using a binary search of some type on
from a reachable state”, if the initial probability vecter i  the data structure used to std¥eresulting in a logarithmic
initialized with probability mass only on some reachable ©verhead.

states (e.g., the initial state with probability 1 and every Interleaving reduces overhead, precludes column access.
other state with probability 0) and the process is ergodic, The logarithmic overhead just mentionedd$log |S|) us-
we are guaranteed that exactly and only the reachable statemg a straightforward implementation. At best, the loga-
will have nonzero entries in the solution vector. In the Ja- rithmic overhead can be reduced log |SK|) by “in-
cobi iterations, we can then avoid ever considering any en-terleaving” the components of row and column indices in
try in R that is related to an unreachable state by skipping the multiplication algorithms [5]. Also, each entry &
over any row index whose corresponding entry in the cur- is conceptually obtained as a productigfreal numbers,
rent iteration vector is zero. Alternatively, we either dee but many entries share (sub)products298,..., K — 1
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Level 1 Full ﬁ manipulating individual states), symbolic generatiomgsi
decision diagrams is typically extremely efficient in terms
submarking| 0 | 1] 2 | 3 of both memory and CPU requirements.
offset] 0 40 | 80 |120 Once the state space has been generated using decision

down . o . .
diagrams, it is transformed into a less dynamic structure
containing some additional information for computing stat
indices. The final representation of the actual state spface o

Level 2 Full : . L
our running example is shown in Fig. 3. For example, fol-
submarking[ 0 [ 1 [ 2 [ 3 lowing the downward pointer below submarking 3 at level
offset| 0 | 4 | 16 | 28 1, we obtain all the states of the for(8,e, e e). If we
then follow the downward pointer below submarking O at

down

\% level 2, we obtain all the states of the fof31 0, e, ¢). Re-

peating this process, we can determine that §taté, 0, 2)
| ' | is reachable, whilé3, 0,2, 2) is not. Notice that many of

the downward pointers lead to the same structure, indicat-

ing equivalent sets. Forinstance, we can quickly see that fo

any reachable state of the for(B, e, e, ¢), State(2, e, e, o)

is also reachable, and vice-versa.

An important property of our structure is that each level
maintains both full and sparse storage. THg! pointers
allow us to determine if a given submarking is reachable in
one operation. For instance, following the downward point-
ers from submarking 3 at level 1 and then submarking O at
level 2, we can quickly tell that no reachable state of the
form (3,0, 2, ®) exists, since element 2 of thé&ll array is
empty. The rest of the structure uses sparse storage, which

of these numbers; an important advantage of interleavingnot only saves memory, but also allows us to quickly iterate
is that it amortizes the multiplications that must be per- over the reachable states, skipping the unreachable dnes. |
formed, by better exploiting these common subproducts. We did not use arrayull, a binary search could be used to
However, the interleaving approach presented in [5] pre- find a given submarking index at each level, but this would
cludes access by columns, so we cannot use Gauss-Seid@dd a logarithmic-time overhead [5].

or any other algorithm with similar access requirements. As  Finally, the index of a state is determined using the
pointed out in [5], this forces us to choose between a slower- offset quantities. The offset specifies the number of accu-
converging method with smaller per-iteration cost, and a mulated reachable states so far, not including the current
faster-converging method with higher per-iteration cost. submarking. For instance, looking at the level 1 structure,

we see that there are 40 states of the fdfiy» e o) and

Level 3

Level 4

Figure 3. State space data structure

3. Our data structures 120 states of the forr{0, 1, or 2}, , e, ®). LoOking at the
. . level 2 structure, we see that there are 4 states of the form
3.1. Decision diagrams to store the state space (3,0, s, ) and 16 states of the for3, {0 or 1}, e, »). Off-

The structure we use to represent the state space is essesets are not explicitly stored at the last level: they can be
tially a variant of a multi-valued decision diagram (MDD) determined from the&*ull pointers. They are depicted in
[19]. Our technique for generating and representing the Fig. 3 using dotted lines only for clarity. To determine the
state space using decision diagrams (either binary or multi index of a state, we follow the downward pointers and add
valued) is described in detall in [14], so we discuss it only the offsets. So, for instance, the index of stg&g), 0, 2) is
briefly here, for completeness. 120+ 040+ 2. For the states reachable frdf 0, 0, 2), we

State space generation with decision diagrams utilizesdiscoverthat the index of state, 1, 1, 2) is0+4+0+2, and
two key ideas. The first is to represent a state space inthe index of staté3, 0,0, 1) is120+0+0+ 1. Note that the
levels, or hierarchically, and was presented in [8]. A set index of(0,0,0,0) is 0 and the index of3, 3, 3, 3) is 159.
of K-element integer vectors (such &gis represented by  Thus, the indexing mechanism maps the set of reachable

storing a set of integers, where each integehas associ-  states onto the intege{s, .. ., |S| — 1}. Also, note that the
ated with it a set of K — 1)-element vectors of integers. indices count the states in lexicographical ordér0, 0, 1)
These(K — 1)-element vectors are combined with to has index 1(0,0,0, 2) has index 2, and so on. Given any
form K -element vectors. The second key idea is to generatereachable statés,, ..., sk), we can easily determine the

the state spacgymbolically each iteration can potentially “next” reachable state (meaning the reachable state with in
discover a large set of reachable states. As these itesationdex one higher than the current reachable state). Using the
only require manipulations of decision diagrams (instefad 0 sparse structure of the decision diagram, we determine the
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Level 1

next reachable substate at levél If there is none, we find o 1 2 e
o[1.0][10}— |

the next reachable substate at lelel- 1. If there are no ;1

next reachable substates all the way back to level 1, then |,

the current state is the last reachable state. Otherwig, if  10[s[04

stopped at levek, we leavesy, ..., s;—1 unchanged, and Level 2

move tos},, the next reachable substate afigffor level k. 0 23

. 2! . olo 1.0

Finally, we find the first reachable substates at lekels1 als o

through K. This operation require8K — 1 steps in the i

worst case, and 1 step in the best (and most common) case " —

0.5
P \
Decision diagrams are extremely efficient both in terms Le"e'f ‘

A 2 3 0 0 1 2 3 1 2 3 ]
of memory and CPU: we can build and store enormous op[10] :lo[o]ol of:[1.0][0.39][0.91] 01 o[o 1.0]
1.0

1.0 0jo[ 1.0

reachability sets since the execution time and the memory :z ;z &
requirements are related to the size of the decision diagram _'i
not to the set encoded by it. In practical models solved nu- "¢ = £ N — S
merically, the memory for the decision diagram is essen- ©° o oplLo]
. . . . o, 1)1 11 11
tially negligible in comparison to the probability vector N s s

3fs 3ls[0.9] 33

3.2. Matrix diagrams for the transition rate matrix
We now introduce a new data structure for the storage

of real matrices. Since this structure is somewhat analo- 4te petween unreachable states. such as flom 1,2) to
gous to decision diagrams, we call in@atrix diagram A (3,0,2,2), we find that our level 3 matrix does not have a
matrix diagram imposes &-level hierarchical structure on 51w 1 or column 2. With the standard Kronecker approach

each element of the matrix it represents. The element corjngtead, the transition rate is given by the nonzero term of
responding to rowry, ..., rk ) and column(cy, ..., ck) is the Kronecker sum in Eq. (1)
computed as the product of elemént, ¢;] of a level 1 ma-

trix with element[r,, ;] of a level 2 matrix, and so on. As- 1[3,3]-1[0,0] - R*[1,2] - 1[2,2] = 0.39

sociated with each element (except for lel@lis a pointer

indicating which matrix must be used at the next level. For which corresponds to the rate for transititn,,s. Matrix

instance, ifB[1,2] = 1.5 andA[0,0] = (2.0,B) thenthe  diagrams are able to eliminate these rows and columns be-

matrix represented bj has the value.0- 1.5 at row(0, 1) cause, in this case, the level 3 matrices can depend upon

and column(0,2). A matrix diagram element is actually a the rows and columns selected at levels 1 and 2. The Kro-

set; this allows for additions. Thus, €[1,2] = 1.7 and necker representation is unable to exploit dependencies of

A[1,0] = {(2.0,B), (4.0, C)}, then the matrix represented this type (generalized Kronecker products allow entries to

by A has the valu.0 - 1.5 + 4.0 - 1.7 at row (1, 1) and depend on “global” indices, but this requires to store ratri

column(0, 2). Only single-element sets are needed at level entries as functions not just real numbers, and their com-

K, since we can replace multiple elements with their sum putational complexity still suffers from the problem of un-

without changing the value of the matrix represented. reachable states: evaluating a function only to find out that
A matrix diagram representing the transition rate matrix it is zero has a cost).

R for our running example is shown in Fig. 4. Each element

is either the empty set (indicated by blank space) or, in our3 3. Kronecker implementation

case, a set of cardinality one (indicated by a box). Notice o o .

that the level 3 matrices have different sizes. This is begau Building a matrix diagram representation & using

rows and columns corresponding to unreachable states havEd- (1) is straightforward. To construct a matrix diagram

been removed. To determine the transition rate from statefor the Kronecker producA = ®f:1 A* we simply copy

(3,0,0,2) to state(0,1,1,2), we follow the appropriate  each matrixA* as a levek matrix diagram. Except at the

path and compute the product, in thiscse 1.0-1.0-1.0. last level, each nonzero elementAf is associated with a

Similarly, the transition rate from stat@, 0, 0, 2) to state downward pointer to the levéd + 1 matrix diagram repre-

(3,0,0,1)is 1.0 - 1.0 - 1.0 - 0.3. The numbers to the left senting matrixA**+!. The levelK matrix does not have any

of the matrices are thew offsets These are analogous to downward pointers; it is merely a copy afX.

the offsets used in decision diagrams: the index of a row  Addition of two K -level matrix diagrams is done by tak-

is computed by summing the row offsets. As with decision ing the union of the elements of the level 1 matrices. The

diagram offsets, the row offsets do not need to be explicitly result is a legal matrix diagram; however, in some cases,

stored at the last level. we can reduce the size of the resulting set. For instance,
Notice that this representation corresponds exactly toif two elements in a set have the same downward pointer,

the transition rate matriR: we do not have extra rows they can be merged by replacing the rate with the sum of

or columns. For instance, if we try to find the transition the two rates. That s, if a set contains eleméntsA) and

Figure 4. Matrix data structure
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L Level1 GetColumny(#1,(3,0,0,1
GetColumny(in: M*, (ck, ..., cx); out: column); il ))sca1e0_84>

[M’“: a level k matrix of the K-level matrix diagram; = GetColumnz(#3,(0,0,1)) <shift 40
ck, . . .,ck . columnindices to select at this level and below; scale 1.0 > _ val {0.84 0.3 0.5}

+ GetColumna(#2,(0,0,1)) : =
column: selected column stored as a sparse vector] ’ ( St 120/ row | 41122 156

Level2 GetColumna(#2,(0,0,1))

1. if k = K then e The bottom level is trivial = GetColumns(#2, (0,1)) <scale].0>

2. column <« M].",Ck, shift 0
3. else scale 0.5\ _ val |0.3 0.5
4. column — O * GetColumns (#3,(0,1))  (pift 28 ) “row | 2 36
5. for each non-empty row ry in column c; of M* GetColumna(#3, (0,0, 1)) . o
6. for each element (value, M***") at M}, ., = GetColumns (#6, (0,1)) (3535 > = v [ ; ]
7. GetColumny1 (M, (Ch41,...,CK ), cO); Level3 GetColumns(#2, (0,1))
8. co + wvalue - co; scale 1.0 val [0.3
I H = GetCol 2,(1 . = !
9. shift indices of co by the offset of row r;; etColumna(#2, (1))  shitco” ) “row | 2
10. column < column + co; GetColumns(#3, (0,1))

Figure 5. Obtaining a matrix diagram column GetColumns (#6, (0,1))

scale 1.0

(r2, A), we can replace those elements with + ro, A). = GetColumna(#3, (1)) { g o

This is equivalent to the transformation }
rn-A+ry- A= (’I"l +’I"2)'A

Similarly, the transformation GetColumna(#2, (1)) = rf)ivl [Of]
r-A+r-B=r-(A+B)

can be performed by replacing elemeftsA) and(r, B)

with (r, A + B), whereA + B refers to the addition op-

erator for two(K — 1)-level matrix diagrams. While the

first transformation always reduces both CPU and memory

requirements, the second one decreases CPU requiremen

but may actually use more memory:_Af andB are used follow the downward pointer and recursively compute the
elsewhere, we effectively .end. up storiAg B, andAA-|- B. appropriate column of this levél+ 1 matrix (line 7). This
Once we have a matrix diagram representaonwe  yegylt is scaled by the value of the current element (line 8)
can obtain one foR by removing the rows and columns  anq shifted by the offset of the current row (line 9). Scaling
corresponding to unreachable states (the decision diagrany; each level performs the product, while the shifting deter

representation of is used to detect these states). For our mines the correct row index. Summing these shifted and
example, this transforms thiex 4 matrices at level 3 into  g¢gled results (line 10) gives the selected column.

the matrices of various sizes shown in Fig. 4.

As with decision diagrams, matrix diagrams must be
kept reducedto alleviate both memory and CPU require-
ments. A reduced matrix diagram contains no duplicate
matrices; instead, a single matrix is stored with multiple i
coming pointers. The matrix diagram in Fig. 4 is reduced:
no two matrices have the same elements (two elements ar
equal if their real values and downward pointers are equal).
Matrix diagrams are kept reduced during their updates us-
ing a uniqueness table. When a matrix is created or modi-
fied, the uniqueness table is searched for a duplicate. Thi
technique is analogous to the well-known approach used t
maintain reduced binary decision diagrams [3].

= GetColumnya(#1, (1)) <Z(:;1f: 51;0> = val |:1é0:|
0

Level4 GetColumng(#1,(1)) =

val [1.
row

GetColumna(#3, (1)) = val |:1.0j|

row | 0

Figure 6. Computing a column of R

matrix diagram, we simply return the selected column (line
Eg). Otherwise, for each element of the lekematrix, we

Computation of a column @R is shown for our running
example in Fig. 6. In the example, we use the matrix dia-
gram represented in Fig. 4 and the decision diagram repre
sented in Fig. 3 as our data structures. A matrix is indicated
by its ordinal number; for instanc&etColumns (#5, . . .)
refers to the fifth matrix (counting from the left) in level
3. In the example, we compute coluni® 0,0, 1) of the
matrix diagram, which is column 121 @. This is done
by calling GetColumn; (#1, (3,0,0, 1), column). We see
thatcolumn contains three entries: 0.84 at row 41, 0.3 at
Yow 122, and 0.5 at row 156. These correspond to incom-
0ing arcs from state$1,0,0,1),(3,0,0,2) and (3,3, 3,0)

via transitiong o1, tpacka aNdtsyncns_a, respectively.

To multiply a row vector by a specific matrix column,
3.4. Access by columns we can usé7etColumn to obtain the column and then per-

A critical requirement for a Gauss-Seidel numerical so- form the inner product of the vector by the column. This is
lution is efficient access to a given column of the transition preferred over modifyingzetColumn to perform the mul-
rate matrix. A matrix diagram allows for efficient access tiplication directly, as we will discuss in the next section
of a column if the matrices at each level of the matrix di- In particular, one (forward) Gauss-Seidel iteration foe th
agram have efficient access to the nonzero elements of &omputation of the stationary probability vectoris
given column. An algorithm for obtaining a specific column for j =0 to [S[~1 do m; « h;-> .5 ~omi-Rij,
of the matrix represented by a matrix diagram is depicted in where the nonzero entries in the colughof R are extracted
Fig. 5. If the specified matrix is at the bottom level of the from the matrix diagram usingetColumn.
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3.5. Using a cache to speed up access by columns

Continuing our running example, suppose after
accessing column(3,0,0,1) of the matrix diagram
we wish to access column(2,0,0,1). We find
that our call to GetColumni(#1,(2,0,0,1)) again
generates calls to GetColumns(#2,(0,0,1)) and
GetColumns(#3,(0,0,1)). Since these calls are identical
to our previous column access, we can avoid duplicate
computation, provided we saved those results in a cache of
recent operations. Of course, we can also reuse them in the
event that duplicate calls t6etColumn occur in a single
column access; for instanc€etColumn, (#1, (1,0,0,1))
generates two calls t6etColumns (#3, (0,0, 1)). Clearly,
this has enormous potential for reducing CPU requirements.

Tpl2_a

Tpl2s_b Tpl2_b

Our cache can be implemented by saving only the most iz Tp12_b Tpizs b Th12_b
recently generated column for each matrix. Thus, for each
matrix in the matrix diagram, we require a single vector. Figure 7. GSPN for the Multiclass QN

Fortunately, these vectors are extremely sparse in pectic . _ . .

and we only need to store their nonzero elements. We canlt€ration); this is much less expensive than the searches re

compute the maximum column size (the maximum number duired by the algorithms discussed in [B){log |S|) or at

of nonzero elements in any column) for each matrix in a PeStO(log Sk |), performed once per nonzero entry.

bottom-up fashion. Then, we allocatealumn vector of i

maximum column size for each matrix before starting the 3.6. Benefits of our approach

numerical iterations, and use this vector whenever we call  |n this section, we revisit the problems with the Kro-

GetColumn for that matrix. necker approach (discussed in Sect. 2.3) and show how our
We mustclear the cache at level (set all thecolumn approach addresses these problems.

vectors at levek to a null value) whenever the specified col-  Actual state space. Like advanced Kronecker approaches,

umn at levelk or any level belowk changes. For instance, our approach operates on solution vectors of gﬂae

if our last column access wd$, 0,0, 1), and now we are  Skip unreachable states. We solve this by storing the

accessing columi3, 2,0, 1), we must clear the cache at state spacé, as do advanced Kronecker approaches. For

levels 1 and 2. Thus, to maximize our cache hits, after visit- efficient storage of, we use decision diagrams, which can

ing the reachable column for state, . .., cx ), we should  also be used for Kronecker approaches. Decision diagrams
visit next the reachable column for the state that follows allow us to find the next reachable state quickly,il)
(c1,...,ck) in lexicographic ordewhen the string is read  gperations at best (and on average), &d’) at worst.

in reverse i.e., whenkK is the most significant (slowest Efficient access by columns.Matrix diagrams allow us to
changing) index and is the least significant (fastest chang- eliminate the rows and columns corresponding to unreach-
ing) index (this is not reverse lexicographic order!). able states; this solves the problem of spurious entries.

To implement this second “upside-down” order, we gen- No logarithmic overhead.  Using the full pointers in
erate a second, upside-down, copy of the state space, angur decision diagrams, we can determine if a given state is
store it in a decision diagratd. For any statés, ..., sk) reachable i) (K) steps, and if a given substate is reachable
belonging toS, there exists a statesk, ..., s1) belong-  in O(1) steps. Thus, using “interleaving” Kronecker tech-
ing to // and vice-versal{ is used to determine the order niques, the overhead for decision diagrams is @i(y).
in which to access columns: if we just accessed columnCache to avoid duplication of work. A significant source

(c1,...,cKk), we reverse the order to obtajpk, ..., c1), of overhead in column access using the Kronecker approach
find the next reachable sta€ . . .., c;) inU, reverse back  is performing the same floating point multiplications sev-
the order of its components to obtdi, ..., i), findits  eral times. By using a cache, we can reduce this wasted
index inS, which is then next column to access. effort. With our approach, we visit the columns in an order

These actions can be performed quite efficiently and, to maximize our potential cache hits. This allows us to reuse

thanks to the extreme compactness of decision diagramsfloating point multiplication results as much as possible.
storing the state space twice (i.e.,&8ndi/) still requires

negligible memory. The computation of the index for the .
negt golumn requ%es to searcl% twice for a state, ondé in 4. Experimental results

(for a state “close” to the last one searched), and once in A prototype of our approach is implemented in the tool
(for an arbitrary state). The second search is the most ex-SMART [7]. We test our approach on two models from
pensive, but it still requires onl@)(K) operations, and it  the literature. The first is our kanban system, our running
must be performed only once per column (i|&),times per example. The second is a multiclass QN model from [5],
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its GSPN shown in Fig. 7 (white transitions are timed and see that matrix diagram Gauss-Seidel and Kronecker Gauss-
local, black transitions are immediate, and grey transgio  Seidel differ in the number of iterations required; thisés b

are timed and synchronizing; all rates are equal one and allcause columns are visited in different orders. The fact that
conflicts among immediate transitions are solved using ain this particular case, matrix diagrams require fewer-iter

uniform distribution). ations can only be attributed to good luck. The total CPU
Both models have as input parameters the initial numbertime required is found by multiplying the number of iter-
of tokens in certain places\ for the kanbanN; and N, ations by the CPU time per iteration. We see that, using

for the QN); these affect the size of the underlying CTMC. decision diagrams and matrix diagrams, we can solve ex-
The models were run on a 450Mhz Pentium-11 worksta- tremely large systems in a reasonable amount of time: 40

tion with 384Mb of main memory, under the Linux operat- Million states in 3 days. For the casé = 7, we require

ing system. We compute the stationary probability vector 0-22 seconds of CPU time for state space generation and

using iterative methods (i.e., Gauss Seidel or Jacobip;sto 3,381 bytes for state space storage using decision diagrams

ping when the relative error between subsequent solutionThis is clearly a small fraction of the time and memory re-

vectors is less thah)—: quired to computer. _
mw e e The results for the multiclass QN model are also shown

in Table 1. The state space size is determined by parameters

We use a uniform probability for the initial solution vector N1 andN», corresponding to the number of high and low

All our timing results refer to runs that did not make use priority parts in the system, respectively (the rows artetis

of virtual memory. Data is missing from the table in cases according to state space sizes). In this case, matrix disgyra

where the solution could not be run due to excessive mem-require about three times as much memory as Kronecker,

ory requirements. and require about a third as much CPU time per iteration as
The tables compare our new approach, using decision di-Kronecker for Gauss-Seidel. Again, matrix diagram Gauss-

agrams and matrix diagrams, to the current state of the artSeidel requires roughly the same time per iteration as does

Kronecker approaches described in [5]. For comparison, weKronecker Jacobi. In this case, Kronecker and matrix dia-

also show the time requirements for explicit sparse matrix 9ram Gauss-Seidel require the same number of iterations.

storage, for those cases where the matrix can be stored in

memory. In all cases we use a full single-precision vector 5. Conclusion

for the probability vector#£). The Jacobi method requires , . i

an additional accumulator, a full double-precision vector . e have introduced a new efficient data structaratrix

Holding times are computed as needed, except for the ex-diagrams which can be used to store the very large tran-
plicit storage case. In the Kronecker case, we use a Kro-Sition rate matrice® that arise in the study of structured

necker expression for the row sums. For the matrix diagram GSPNs. For practical problems, the memory requirements

approach, we use a second matrix diagram to represent thd0" the storage of the state spatand ofR are quite small,
row sums. Using a full vector to store holding times re- uUsually negligible in comparison to the memory needed to

duces the CPU time by 10% to 20%, at the cost of an extraStore the numerical solution, a vector of sj&.
single-precision vector. For the Kronecker case, we use a SUch enormous memory savings for the storagdRof
multilevel data structure fof as described in [5] and [8], have already been demonstrated by the various Kronecker
requiring about one byte per state. If we used decision dia-MPlémentations recently proposed. However, matrix di-
grams in conjunction with the standard Kronecker approach@drams also decrease the execution overhead inherent in
to eliminate the logarithmic overhead present in column ac- the Kronecker representation when accessing the entries of

cesses, performance would improve by a factor of 15% to R Wh”?’ at the same time, allowing efficient access "by-
2504, column” to the entries oR. Such a type of access is es-

sential when using faster-converging numerical algorghm
3uch as Gauss-Seidel.

maXies

7T1(.new)

Results for the kanban model are shown in Table 1.
Looking at the state space sizes and the number of nonzer Our results show a speedup factor of two or greater in the

entries inR, we see that matrbR is extremely sparse: solution times with respect to the fastest algorithms previ
about 10 to 11 nonzeroes per column, on average. The P 9 P

memory required for our matrix diagram structures (includ- .OUSIY _prpposed. Smce_ the _dlfference is partially due o hav
ing cache space) is about twice as much as for the Kro-N9 eliminated a logarithmic overhead factor, these differ
necker approach, but still an insignificant fraction of the ences are going to become even more relevant as improve-

memory required for the probability vector. Looking at the ments in hardware allow us to tackle larger models.
columns reporting the CPU time (in seconds per iteration),

we find that our matrix diagram approach requires about asReferences

much time per iteration as for the Kronecker approach using

Jacobi and much less CPU time (about half) as for the Kro- [1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
necker approach using Gauss-Seidel. As we expect, Gauss-  G. Franceschinis. Modelling with generalized stochastic
Seidel requires much fewer iterations than does Jacobi. We Petri nets John Wiley & Sons, 1995.

www.manaraa.com



|S] | n(R) Matrix diagram Kronecker Explicit

N Kanban Memory | Gauss-Seidel| Memory | Gauss-Seidel| JOR (v = 0.9) | Gauss-Seide
(bytes) | lters secliter| (bytes) | lters secliter| Iters secliter| Iters secliter

3 58,400 446,400 7,599 | 67 1.46 3,746 97 2.56| 240 134 97 0.34
4 454,475 3,979,850 13,518 99  12.33 6,096 | 149  23.69| 370 11.99| 149 3.04
5 2,546,432| 24,460,016/ 21,667 139  73.09 9,486 | 214 147.70| 527 74.09| 214 1851
6 11,261,376 115,708,992| 32,702| 185 336.21| 14,106| 289 723.30| 713 359.15 - -
7 41,644,800| 450,455,040/ 46,678 | 238 1,289.91| 20,388| 374 2,922.80 - - - -
N1 N, Multiclass QN Memory | Gauss-Seidel| Memory | Gauss-Seidel Jacobi Gauss-Seide
3 3 425,104 3,389,626| 34,126 116 11.51| 12,341 116 32.07| 406 13.00| 116 2.73
5 2 981,720 8,130,330| 52,519| 121  27.25| 28,812| 121 80.28| 394 30.90| 121 6.36
4 3 1,560,888| 13,439,073| 45,654 | 131  44.31| 19,378| 131 127.77| 463 49.57| 131 10.55
5 3 4,741,344| 43,178,076| 72,124 | 142 138.50| 31,932| 142 418.13| 510 155.24 - -
4 4 5,731,236 53,120,700 78,570| 173 169.16| 25,613| 173 492.63| 617 190.33 - -
5 4 | 17,409,168| 169,728,572| 113,060 183 528.80| 38,167| 183 1,670.61| 662 596.09 - -
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